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Abstract. A theory of light emission in sonoluminescing hydrogen bubbles, based upon transitions in
confined atoms, is proposed. Despite the simplicity of the assumptions this model accounts for a number of
facts related to sonoluminescence: a broadband spectrum in the correct wavelength window is predicted as
well as the number of emitted photons. Taking the temperature at the moment of collapse as a parameter
we argue that confined atomic transitions at 4000 K may account for the observed light emission. This result
favours a ‘cold’ interpretation of sonoluminescence in contrast to previous theories. Many considerations
are qualitatively extendible to rare gases.

PACS. 43.35.+d Ultrasonics, quantum acoustics, and physical effects of sound

1 Introduction

Sonoluminescence has arisen considerable interest in the
scientific community over almost 70 years. It was dis-
covered in the ’30 by Frentzel and Schultes and redis-
covered in the more appealing form of Single Bubble
Sonoluminescence (SBSL) by Gaitan and Crum in the
early 1990’s [1,2]. This last phenomenon consists in a sin-
gle bubble of gas trapped in the antinode of a superim-
posed ultrasound field in a spherical or cylindrical res-
onator filled with degassed water. The wall of the gas
bubble undergoes a strongly non-linear motion that is de-
scribed by the Rayleigh-Plesset equation. At the very mo-
ment in which the bubble is at its maximum compression
a burst of light with broadband spectrum in the visible
region is seen. Recent reviews on the subject with a com-
plete bibliography may be found in [3].

Our aim is to try to answer a fundamental question
like the one that represents the title of a recent article: “Is
there a simple theory of sonoluminescence?” [4] by propos-
ing a fully quantum-mechanical light emitting mechanism
that explains qualitatively and quantitatively the region of
wavelengths and the intensities of sonoluminescence spec-
tra, as well as the broadband nature of the emission.

In the following we will try to relate sonoluminescence
to the study of compression in atoms. To summarize before
entering into the details, this theory is based on the idea
that at the point of maximum compression high tempera-
tures, densities and pressures are present and this modifies
the radial form of atomic orbitals. The fact that, in the
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turn of a very short time, many atoms are forced in a very
tiny space and the temperatures are high enough that they
cannot form any stable bound state or crystal lead us to
use an infinite quantum well to simulate pressure.

Pressure is known to be related to an enhancement of
energy levels and to a shrinking of atomic orbitals [5].

Atoms referred to as “confined” quantum systems are
not a new issue in physics. Since the famous paper of
Sommerfeld and Welker [6] the consolidated theoretical
and experimental interest in confined atomic systems ([7]
and references therein) is constantly grown thanks to
the exciting technological possibilities and to the bulk of
work concerning many intriguing systems like atoms en-
closed in zeolites, fullerenes [8] or silicon and carbon nano-
devices [9], that can be thought as idealized cages. But it
is, first of all, stirring the quantum mechanical problem
of confined interacting particles, the properties of which
are very often different from those of the free ones [10].
Exploiting the features of such a confined atom is, with-
out doubts, a goal to be pursued.

The phenomenon of SBSL has many obscure points
and the light emitting mechanism is still not understood
even if a plethora of models have been proposed [11]. Our
idea is that light is emitted in the very same moment in
which the violent collapse of the bubble compresses the
gas to such a degree that the notion of hard spheres,
that is well-working for the description of the dynamics
of the bubble, may turn out to be not a good approxi-
mation as far as a light emitting mechanism is concerned.
At the beginning all the free atoms are in their ground
states, having a Maxwellian distribution of kinetic ener-
gies. Then a sudden collapse occurs that we model with
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the introduction of a square well term in the Hamiltonian.
According to the sudden approximation, the occupation
probabilities (that at low temperature are 1 for the free
ground state and 0 for all the excited states) are reshuf-
fled and the new ones are calculated as overlaps between
the old and the new eigenstates: since the angular part
of the wavefunctions must also be taken into account and
since the spherical symmetry is preserved only states with
� = 0 may be populated in this way, because the overlap
integral with the initial s-eigenstate of the free hydrogen
atom Hamiltonian and the final state of the compressed
hydrogen atom Hamiltonian is separated into a radial and
an angular integral and the latter gives δ0,�. The lowest
state is thus the compressed 2s that is populated because
of the sudden confinement. The degree of compression is
however not the same for all the atoms, but they are com-
pressed according to some distribution that is remnant
of the initial one. The interplay of these two simple facts
generates a broadband spectrum since the 2s state decays
to the lower 2p one with a confined-confined transition
within the right energy interval.

It is an experimental observation that rare gases are
optimal to enhance the emitted intensity [12], nonetheless
sonoluminescence has been noticed also in gas mixtures
and in other chemical species such as hydrogen [13] and
the obtained spectrum has a typical extension from red
to blue wavelengths with an increasing intensity towards
higher energy and a resultant bluish light.

Concerning ourselves to the hydrogen atom, we will
discuss the results of Chuu and coworkers [14] about the
analytic solution of the Schrödinger equation for that
atom in the center of a confining infinite spherical well
(Sect. 2). They provide the complete set of eigenfunctions,
giving the implicit formula for the eigenenergies.

We then imagine the physical situation in which the
atom undergoes a transition between confined states. We
use hydrogen as a model to carry on calculations, since its
compressed wavefunctions are known, with the purpose to
achieve a good description of the spectrum from a qual-
itatively point of view as well as to estimate the order
of magnitude of the most important quantities. Hydrogen
and rare gases have a striking similarity for what concern
their level scheme: the first excited state lies at very high
excitation energy (at least about 10 eV). This is a feature
that is not met in other gases (such as pure N2 or pure O2)
that do not yield light emitting bubbles.

In Section 3, we make a simple model for a transition
near the sudden confinement. The electromagnetic matrix
elements for purely free hydrogenic atoms have been usu-
ally calculated in dipole approximation (see Bethe and
Salpeter [15] for a detailed review) but have also been
derived exactly in a very elegant way by Moses [16] and
Seke [17]. We will carry on a complete calculation with-
out recurring to the dipole approximation because dipole
approximation may fail as long as the dimension of the
system are changed, and we would like to get rid of this
possible problem from the beginning. This does not in-
troduce a greater degree of complication in the numerical
calculations.

In Section 4, our ideas about sonoluminescence are dis-
cussed and in Section 5, we show the electromagnetic ma-
trix elements, transition probabilities and emitted power,
as a function of the degree of compression (either express-
ible as the radius of the confining well or as the wavevector
of the emitted light, as we explain later). The origin of the
broadband spectrum is treated in Section 6 and we give
numerical estimates for relevant quantities. We conclude
with a few remarks on the pro et contra and on the possi-
ble ways of improvement.

A somewhat similar model was introduced some years
ago by Bernstein and Zakin [18]. They considered emission
from electrons bound in interatomic cavities. In our model
both electon and atomic nucleus are included in some sort
of cavity (that comes from the presence of other surround-
ing atoms), in which are both confined.

2 Confined hydrogen

The Hamiltonian of a non relativistic hydrogenic atom
without spin correction and with an infinite mass nucleus,
to avoid the complications arising from the motion of the
center of mass, situated at the center of an infinite spher-
ical potential well reads:

H =
−�

2∇2

2µ
− Ze2

εr
︸ ︷︷ ︸

H0

+V (r). (2.1)

Here µ, Z and ε are the effective mass, electric core charge
and dielectric constant. We assume that the potential well
has a radius R0 and it can be expressed as

V (r) =
{

0 if r < R0

∞ if r > R0.
(2.2)

This potential gives rise to boundary conditions at the
extremes and implies that the wavefunctions of the system
are identically zero for r > R0.

We refer the reader to the already cited work of Chuu
et al. for the details and we merely discuss their results.
Being the confining potential infinite, the spectrum con-
tains discrete states only, both for negative and positive
energies. They find the wavefunctions for those two cases,
for a given total angular momentum J = L (since spin is
not included), in terms of Whittaker and Coulomb func-
tions respectively:

RL(r) = NC e−(αr)/2(αr)L

× 1F1

(

1 + L − η, 2L + 2, αr
)

(2.3)

for E < 0, with α2 = −8µE/�
2 > 0, η = 2µZe2/ε�2α and

RL(r) = N ′
C e−(iα̃r)(α̃r)L

× 1F1

(

1 + L − iη̃, 2L + 2, 2iα̃r
)

(2.4)
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for E > 0, with α̃2 = +2µE/�
2 > 01, and η̃ =

−µZe2/ε�2α̃. The normalization constants NC and N ′
C

are very important since they depend on alpha’s and have
to be calculated numerically.

In both cases the boundary condition is RL(R0) = 0,
that is equivalent to the problem of the values of the zeros
of the confluent hypergeometric function. Considering for
example the former case one may write:

1F1

(

1 + L − η
︸ ︷︷ ︸

−a

, 2L + 2
︸ ︷︷ ︸

c

, αR0

)

= 0, (2.5)

where a ∈ R
+ in order to yield positive zeros. This equa-

tion is usually solved numerically in η. The energy of the
system may be expressed as

E = −µZ2e4

2ε2�2

1
η2

. (2.6)

We note that when the first parameter of the hypergeo-
metric is nr < a < nr +1, with nr ∈ N there are nr nodes
in the radial wavefunction. For consistency with the free
hydrogenic atom notation the nodes in the two extremes
r = 0 and r = R0 are not considered. Rewriting the
relation between a and η in a more transparent way, as
η = 1 + L + a ∈ R, we immediately find that η plays the
same role as the principal quantum number n. In the free
case the levels are degenerate with respect to the angular
quantum number and they only depends upon the prin-
cipal quantum number, while in the confined case some
dependence on L is expected. The optimum would be to
solve analytically equation (2.5) but, to our knowledge,
only fairly approximated formulae [20,21] have been re-
ported so far for the zeros of the confluent hypergeometric
functions.

3 Electromagnetic interaction

The electromagnetic interaction, neglecting the second or-
der terms in the vector potential, is

Hem = i
e�

µc
A · ∇. (3.7)

The exact matrix elements for the free atom are calculated
by Moses [16].

In our case we want to derive the matrix elements be-
tween states of the system modified by the presence of the
confining potential. We have two possible versions of the
system: the free atom, the Hamiltonian of which is the
well-known one, that we have called H0, and the confined
atom, with Hamiltonian H0 + V (r). Each one has its own
basis of eigenstates and corresponding eigenenergies.

Imagine the situation in which the atom is, in the far
past, in an eigenstate of one of the two Hamiltonians, say,

1 We have had confirmation by the authors [19] that in [14]
there were some typos regarding the sign of α̃2. Notice that we
have slightly changed notation adding a tilde in order to avoid
confusion.

to fix the ideas, the free Hamiltonian, and then abruptly
at a certain time the atom is caged by the infinite poten-
tial well. It is worth mentioning that the initial free state
now becomes an admixture of the basis states of the caged
atom, without radiating any photon (this is commonly re-
ferred to as the “sudden approximation”, well explained
in [22]). This is an important part of the phenomenon that
we are discussing since the sudden occurrence of the bar-
rier has two consequences: first the occupation probabil-
ity are redistributed in such a way that any excited state
with the same angular momentum of the initial state has
a non-zero population and second the wave functions are
modified by the presence of the barrier. Now we imagine
an electromagnetic transition between two confined sta-
tionary states, in which a spontaneous photon emission
occurs. We recall the standard treatment of spontaneous
emission by classical analogy (see for example [23]): cor-
rect formulas for the transition probability are obtained
replacing the current density characterizing the classical
radiating charge-current distribution by a quantum anal-
ogous, consisting of the matrix element of the gradient
operator between two states, an initial upper eigenstate
and a final lower one with a change λ in the total an-
gular momentum. The same arguments made in [23] for
free hydrogen atom apply here for the compressed eigen-
functions. We want to extend this analogy to the present
case.

We will consider the complete multipolar expansion of
the electromagnetic Hamiltonian for the sake of general-
ity. We will indicate with RC

{A′} the radial wave function
of the state of the confined hydrogen atom. Here {A} is
the set of quantum numbers {n, j, l, m} (but j = l here,
since we have no spin). The elegant result of Moses ex-
presses the electric and magnetic matrix elements for the
transition between an initial state |1〉, for which there is no
photon and the atom is described by the quantum num-
bers {n1, j1, m1}, and the final state |2〉, for which there
is a photon with quantum numbers {E, j, m, Λ} (where
the last is the helicity) and the atom is in the state
{n2, j2, m2}. For the convenience of the reader, we report
here his general result for j + j1 + j2 even (electric-type
transition), but with our modification to the upper bound-
ary of the integrals:

〈1|Hem|2〉E = e2a0(αf.s./8)1/2ij(−1)m1Λ

×
(

(2j+1)(2j1+1)(2j2+1)
πj(j+1)

)1/2(

j

m

j1
−m1

j2
m2

)(

j

0
j1
0

j2
0

)

×
[

(

j(j+1) + ∆(W+1)
)
∫ R0

0

jj(kr)RC
1

∗
(r)

( ∂

∂r
RC

2 (r)
)

rdr

︸ ︷︷ ︸

IE1

+
(

−j(j+1)+∆(W +1)
)
∫ R0

0

jj(kr)
( ∂

∂r
RC

1

∗
(r)

)

RC
2 (r)rdr

︸ ︷︷ ︸

IE2

]

,

(3.8)
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Fig. 1. Energy level scheme as a function of the confining
barrier R0. The two lower dot-dashed lines represent the en-
ergies of the free hydrogen n = 1 and n = 2 states, while the
upper is the threshold at E = 0. The vertical lines placed at
R0 ∼ 2.69 Å and R0 ∼ 3.24 Å divide the figure in three regions
(see text). Notice that the energy gap depends on the radius
of the confining barrier.

where ∆ = j1 − j2 and W = j1 + j2, a0 is the Bohr
radius and αf.s. is the fine structure constant. For the
Wigner 3-j symbols the reader could refer to [24].

For j + j1 + j2 odd (magnetic type transition) one
obtains an analogous formula. We can see that, apart from
physical constants and numerical factors, due to angular
integration, the hurdle to overcome here is the integral,
that we will nevertheless calculate numerically. We work
with the exact form of Bessel function, without recurring
to the usual dipole approximation because the difference
of implementation is minimal and in this way we get rid
of any possible failure as long as the atom is shrinked to
a size that may make the dipole approximation useless.

4 Outline of the physical case of SBSL

Now we are prepared to the discussion of sonolumines-
cence from a quantum mechanical point of view.

The idea underlying the model is summarized in
Figure 1. One solves the Schrödinger equation with re-
spect to the parameter R0 that is the radius of the in-
finite spherical well, obtaining the level scheme and the
eigenfunctions.

The free hydrogen atom (without spin corrections),
that here is recovered in the R0 → ∞ limit, has the
1s state at −13.6 eV, the degenerate 2s and 2p states
at −3.4 eV and a threshold (corresponding to n = ∞) at
zero energy. We have drawn three horizontal dot-dashed
lines in correspondence to these three values. When the
barrier comes closer to the position of the nucleus the en-
ergy levels begin to rise their energies according to the
prescriptions in [5] and at the same time the degeneration

in energy between states with different angular momen-
tum quantum numbers is lost: the state with lower � raises
more. We have divided the figure in three regions by means
of vertical lines placed at R0 ∼ 2.69 Å and R0 ∼ 3.24 Å.
These radii correspond respectively to the points at which
the energy of the 2p or of the 2s state crosses the thresh-
old. These cases require an individual analysis since in the
right region both wavefunctions are of the type (2.3), in
the central region the 2p wavefunction is of the type (2.3),
while the 2s one is of a (2.4) type and in the left region
they are both of a (2.4) type.

Imagine now that we have a population (we will discuss
later the way in which it is achieved) of the n = 2 states
(both � = s and � = p) at some fixed R0. The possible
electric dipole transitions are:

2p → 1s 10.2 eV < Eγ < ∞
2s → 2p 0.0 eV < Eγ < ∞.

The energy of the first one must be bigger that 10.2 eV
and it may be ruled out by the absorption of water at
this frequencies, while the second, may have every energy
gap. It turns out that in the region around 2−3 Å the en-
ergy is between 2−6 eV. This is the range of the confining
radii that gives energies in accordance with the experi-
ments. If one solves the Rayleigh-Plesset equation with
some equation of state (from isothermal to adiabatic) with
heat-exchange, and divides the volume of the bubble at
its minimum for a typical value of number of atoms in the
bubble, one may notice that the radius of the specific vol-
ume that surrounds each atom is in the range between 1 Å
to some 4 Å. Thus the fact that these two ranges are con-
sistent seems a clue that suggests that this phenomenon
may be a candidate to explain SBSL. This statement will
be reinforced by the calculation of the spectral intensities
in the next sections. We mention that the specific volume
decreases accordingly to the radius of the cavity, because
in our model the wavefunctions are limited by the wall
of the potential well and the expectation value of r2 de-
pends therefore on the extent of compression. The same
reasoning may in principle be applied to the spectra of all
the rare gases since there is always a big gap between the
ground state and the first excited state.

5 Results for the transition
between compressed 2s and 2p states

The matrix element for the transition between a com-
presses 2s orbital and a compressed 2p with the emission
of a photon with wave vector k, given helicity Λ and given
third component of the angular momentum m reads:

〈2sC , 0ph|Hem|2pC , 1ph〉Λ,m = ie2a0

√

αf.s.

π
Λ

×
∫ R0

0

j1(kr)

(

∂RC∗
2s (r)
∂r

)

RC
2p(r) r dr, (5.9)
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Fig. 2. Square of the matrix elements (in eV2), transition
probability (in s−1) and emitted power (in W) as a function of
the confining radius (in Å). The vertical scales are logarithmic
and only the exponents of 10 have been explicitly written. The
three insertions present the same data but in a linear vertical
scale, for a limited interval ranging from 2 to 5 Å.

where the angular part has already been calculated. The
integral in the expression above, containing the radial
wavefunctions of the mentioned states, may be computed
numerically. The nontrivial dependence of the normal-
ization constant of compressed states upon the wavevec-
tor has been carefully considered and attention has been
brought to take into account the proper values. We plot in
the combined Figure 2 the square of the matrix element
summed over the two possible helicity and three values of
m (amounting to a total factor of 6) expressed in short-
hand notation as ME2 =

∑

Λ,m |〈−|−|−〉|2, the transition

probability T = 2π
�

ME2

�ω and the emitted power P = �ωT
with respect to the radius of the confining barrier. Each
point in the figures represents the value of matrix ele-
ments, transition probability or emitted power that an
atom will exhibit when shrinked to a well defined value
of the confining radius that, in turn, results in a well de-
fined value for the wave vector of the emitted photon.
The modifications that we have found are interesting and
one should expect that, if a transition between an initial
confined 2s and a final 2p compressed state is produced,
the signature in the spectrum must be seen clearly. To
summarize we argue that sudden compression of hydro-
gen atoms will result in a transition to a lower state with
the following features:

– good energy gap from (free limit) 0 eV to few eV’s,
resulting in visible light emission;

– sizeable growth of matrix elements, transition proba-
bility and emitted power;
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Fig. 3. Squared overlap between the 1s free wavefunction and
the 2s compressed wavefunction as a function of the confining
radius (in Å). The vertical scale is logarithmic. The insertion
presents the same data but in a linear vertical scale, for the
interval of interest ranging from 2 to 5 Å.

– population of n = 2 states due only to the sudden con-
finement (to be discussed in the following paragraph).

Our calculations depend on the infinite square well ap-
proximation that we have employed, nevertheless we ex-
pect that this model captures the essential features that a
more realistic potential would yield. In particular, assum-
ing a typical value for the acoustic pressure applied to the
bubble and a typical volume change, one can calculate the
compressional energy transferred to the gas. Distributing
such energy among the atoms, one can see that on the av-
erage each of them gets enough compressional energy to
reach the region of small R0’s (in Fig. 3), needed for our
model to give a correct spectrum.

6 Discussion of the origin of the broadband
spectrum

Many theories are available on the stock to describe the
dynamics and thermodynamics of the bubble to a more
or less refined degree. We do not attempt here a detailed
enumeration of these approaches, but we refer the reader
to the appropriate bibliography [3]. Despite the early at-
tempts to give an estimate for the maximum temperature
reached at the collapse that ended with predictions of very
high temperatures, it seems that nowadays various groups
have reached a common range of values, from few thou-
sands Kelvin to, at maximum, 20 thousands. These tem-
peratures are consistent with blackbody fits of the spectra,
which look rather successful, but still lack a robust phys-
ical explanation. The gas inside the bubble follows the
well-known laws of gases in the most part of the SBSL cy-
cle, that is with the exception of the last part of the quick
compression. At the moment of collapse a simple adiabatic



320 The European Physical Journal D

equation of state is too crude an approximation. Instead
of the many elaborated treatments that can be found in
literature we will propose simple arguments. Without the
need of specifying the details of the collapse, we argue
that, at the end of the shrinking process, the bubble con-
tains a high density fluid and the compressed atoms, that
on the average are at rest, have a distribution of specific
radii (i.e. the radius of the volume that each atom may
occupy) that is remnant of the initial energy distribution:
it turns out from experimental data, as noticed by many
authors, that the specific atomic volume may be smaller or
of the same order of magnitude of the free atomic volume.
Reshaping these consideration within the physics of com-
pressed atomic orbitals implies that each atom is trapped
in a cage small enough to modify its orbitals and the radii
of the various cages may be different, according to some
distribution. We take the Maxwellian distribution as an
approximation for the distribution of kinetic energies in-
side the bubble before the collapse. The kinetic energy
is transformed into potential energy after the collapse re-
sulting in an enhancement of the energy levels. Assuming
this hypothesis one can write a distribution in confining
radii that depends only on the temperature:

H(R0)dR0 =
2√
π

( 1
kT

)3/2

×
√

Eγ(R0)eEγ(R0)/kT dEγ

dR0
dR0, (6.10)

where Eγ is the energy of the 2s-2p transition at a
given R0. Hence the fraction of atoms that emit light is

Ñγ(R0)dR0 =
Nγ(R0)dR0

Natoms
= |〈2sC |1sF 〉|2H(R0)dR0

= |〈2sC |1sF 〉|2H(λ)
∣

∣

∣

∣

dR0

dλ

∣

∣

∣

∣
dλ, (6.11)

where Nγ(R0) is the number of emitters, while Natoms

is the total number of atoms in the bubble. This frac-
tion is displayed in Figure 4 as a function of the confining
radius for a given temperature of 4000 K (see below for
a detailed discussion). As a side remark we notice that
any other reasonable choice for the radii distribution, i.e.
showing a peak in the correct window of radii and decreas-
ing quickly at zero and infinity, should give at this stage
similar results. In particular, relaxing the hypothesis of
an infinite hard-core potential, one may expect a distribu-
tion of potential energies, that should be properly taken
into account in the present reasoning. It seems to us that
the use of infinite square well includes the essential part
of the physics, and only details can be modified using a
more sophisticated modellization.

We show in Figure 5 the predictions for the specific
spectral radiance (defined as the spectral radiance divided
by the total number of atoms in the bubble). It reads

R̃(λ)dλ =
R(λ)dλ

Natoms

= |〈2sC |1sF 〉|2P (λ)H(λ)
∣

∣

∣

∣

dR0

dλ

∣

∣

∣

∣
dλ, (6.12)
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Fig. 4. Distribution of the number of emitters as a function
of R0 at 4000 K divided by the total number of atoms in the
bubble. The integral is about 10−5 which, combined with the
typical number (109) of atoms in the bubble, gives a reasonable
estimate (104) for the number of emitted photons.
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Fig. 5. Spectral radiance for one atom (logarithmic vertical
scale) in W/nm as a function of the wavelength of the emitted
light (in Å) for various temperatures indicated in Kelvin near
each curve. To obtain the spectrum one has to multiply these
curves for the total number of atoms in the bubble since the
fraction of them that occupies the 2s is already been taken
into account (see text). The inset shows the 4000 K curve in a
vertical linear scale.

where P (λ) is the emitted power (equal to �ωT , see previ-
ous section) as a function of the wavelength of the emitted
light. It already contains the occupation probability of the
2s state that is the square modulus of the overlap integral.

In this figure we give many curves corresponding to
different temperatures in a logarithmic scale (and in the
inset we display the curve at 4000 K in a vertical lin-
ear scale). The lineshape of the experimental spectrum
given in reference [12] (which updated older ones, see
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references therein for details) is thus reproduced consid-
erably well for a temperature that ranges between 3000 K
and 4000 K, that gives the peak in the right windows
of λ’s. However to obtain the total spectrum we still have
to multiply by the total number of hydrogen atoms inside
the bubble. It turns out that a factor of about 106−107 is
needed to reach a few 10−13 W/nm. This factor is two or
three order of magnitude smaller than the typical value for
the number of atoms inside an hydrogen bubble trapped
with a partial pressure of 3 torr: with R0 = 3 µm and
f = 33 kHz at room temperature one expects at maxi-
mum some 109 atoms. If one insists in using this value,
one obtains a spectral radiance that is bigger than the ex-
perimental values. Standing the various approximations
that our model contains and the rough estimates that we
have employed in our previous considerations, the results
seem nevertheless to point in the right direction. More-
over integrating the distribution in Figure 4 and multi-
plying for the total number of atoms (say 109), one can
obtain for the total number of emitters (that corresponds
to the total number of photons) an estimate of about 104.
This value is about 1/10 of the typical value of photons
emitted from an air bubble in water at room temperature.
This seems to go in the same directions of the measure-
ments of SL in hydrogen bubble that also indicates that
this gas yields dim bubbles [13], although it is still un-
clear to what extent water vapor might play a role both
in the bubble dynamics and in the emission mechanism
(for example it may modify the interaction potentials, i.e.
contribute to the compression with a differently shaped
potential well and/or change the concentration of emitting
atoms). Another good point is that the slopes of the two
tails are in good agreement with the typical trends found
experimentally: the sharp cutoff near the maximum at
high energies (low wavelengths) is a natural consequence
of the convolution of the power (Fig. 2, third panel) with
the distribution of the specific radii, while the mild falloff
at low energies is also consistent with the available data
(from the peak position to 8000 Å it typically decreases
of less than one order of magnitude).

7 Summary and conclusions

The main outcome of the present work has been to furnish
a completely novel quantum mechanical mechanism to ex-
plain, at least in a qualitative way, the observed broad-
band light emission in single bubble sonoluminescence.
This theory is based on the natural extension of electro-
magnetic transitions in confined atoms, that we think may
play a crucial role in the solution of the SBSL puzzle. Af-
ter setting the model we have specialized the calculations
in the case of hydrogen, giving some numerical support to
this view.

We think that our theory does not include the follow-
ing points:

– we have not found the width of the light pulse (that
is considered a test-quantity [3]). This is due to the
fact that the ‘real’ phenomenon has an evolution with

time that we left out introducing the Maxwellian dis-
tribution of radii, that in turn relies on the equivalence
between kinetic energies before and compressional en-
ergies after the quick collapse: a refined way to treat
this would be to implement a two-channels system with
back and forth transitions;

– we have focussed on the light emitting mechanism leav-
ing aside the study of the dynamics of the bubble
(a topic that has been extensively covered until now).
A complete theory of sonoluminescence needs to join
these two aspects;

– we have not yet included transient type of light emis-
sion (unstable SL) in the present context.

Nevertheless, starting from quantum mechanical exact
calculations and making use only of reasonable approx-
imations, such as the simulation of the quantum effect of
pressure with an infinite square well and the derivation of
a ‘Maxwellian’ distribution for the radii at the collapse,
this theory explains in a simple and attractive way many
observations:

– the broadband spectrum is obtained without introduc-
tion of any parameter except temperature (that is not
known so far). Choosing a temperature that is con-
siderably lower than the ones proposed in the past,
the process gives enough visible light to reproduce the
peak and the shape of the spectrum. The fact that
this theory may explain the observed intensities at a
temperature that is lower than the ones needed or pro-
posed in other models should be considered a strong
argument;

– two main explanations of the absence of line emission
in sonoluminescence were often given: or the pressure
broadening spreads the discrete lines forming a contin-
uum or the continuum radiation (due to some mecha-
nism) is more intense that the line emission that thus
remains invisible. Our mechanism furnishes a natu-
ral alternative to the absence of line emission explain-
ing the spectrum as a collection of discrete transitions
with different energies. In fact experimental data like
Figures 18 and 19 in the work of Brenner et al. [3]
have a simple qualitative interpretation at the light of
our model. Notice that Figure 18 in the cited work is
for argon, while Figure 19 is for organic fluids: both
organic molecules and water, that was considered a
“friendly” environment for SL (see Barber et al. [3]),
contain hydrogen. After a few cycles (perhaps just one)
these molecules are likely to be broken, as explained,
and they provide a source of free hydrogen, that is at
the very center of our present speculations;

– the number of photons comes out naturally from our
scheme, if we choose a reasonable estimate for the total
number of hydrogen atoms inside the bubble;

– the particular role of hydrogen and rare gases is found
to rely in the big gap that they present in the level
scheme. For these particular gases the reshuffling is ef-
fective only for s states due to the orthogonality of
the wavefunctions with different � (as we already ex-
plained) and the occupation probabilities are smaller
for higher lying states. In principle one should take
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into account all the Ns − (N − 1)p transitions, but
the lowest possible is the strongest. Other gases with
a different electronic structure with respect to noble
gases (that are expected to give rise to more complex
situations) may populate low-lying states by collisions
before reaching an appreciable degree of compression;

– a clue to the explanation of the dramatic dependence
of the total emitted power upon the ambient conditions
is suggested: a variation of the initial conditions affects
the final temperature of the bubble and the intensity of
the spectrum strongly depends upon this temperature
as seen in the last figure;

– the lowering of ionization potentials and appearance of
electronic band structure may be also explained qual-
itatively. In our simple model the use of an infinite
well prevents to speak about a meaningful ionization
potential, nevertheless with a finite well the behaviour
would have been the same, though milder, and in that
case the energy needed for ionization would have de-
creased accordingly to the radius of the confining well.
Thus electrons free from their original atoms, but still
bound by the cavity would give rise to electronic band-
like behaviour;

– even if we have not introduced the effects of a dense gas
on the propagation of light in an accurate way, a semi-
classical argument is in order to support our idea: if the
emitter is in the center of the bubble and the photon
has to go straight through the bubble at its maximum
compression (say 0.2 µm), the order of magnitude of
the number of atoms that it may encounter is ∼2×103.
The distribution of the number of emitters/absorbers
is given in Figure 4. In the most unfavourable situa-
tion the photon is emitted by an atom whose cage is
the most abundant, and the probability to find another
atom with the same cage is at maximum some ∼10−5.
The probability for the absorption of such a photon is
thus roughly ∼2× 10−2, that may be easily neglegted.

We feel that a better level of approximation may lead
to precise quantitative results, but the rough features of
the phenomenon are under control. Further theoretical in-
vestigations on SBSL must clarify if a relaxation of the
hypothesis of sudden approximation leads to different re-
sults. In negative case, this theory seems to support a cold
interpretation of SL spectra (where with ‘cold’ we mean
colder that the current interval that ranges from 8000 K
to higher temperatures). Thus any ‘hotter’ theory should
take into account the contribution given from confined-
confined transitions to the total spectrum.

One may wonder that in real SL the bubbles are filled
with molecular hydrogen, H2 and not with atomic hydro-
gen. If one confines an H2 molecule inside the cavity and
shrinks the radius, the behaviour of the systems is simi-
lar: for a certain compression the molecular ground states
crosses the threshold and the molecule is no more bound:
this anyway happens for much larger radii because the
molecule is much less bound than the atom. This may be
a line of refinement of our model.

We also mention that an effort to repeat and re-
fine these calculations with other gases (using variational
wavefunctions, for instance) is required and that the last
word should be searched in experiments, specifically de-
signed to measure the temperature of the bubble, that has
insofar eluded any experimental effort.
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